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Thermally  activated  delayed  fluorescence  (TADF)  emitter
is  a  promising  organic  light-emitting  diode  (OLED)  material
due  to  low  cost,  wide  luminous  color  gamut  and  100%  ex-
citon  utilization  efficiency[1].  To  achieve  high  TADF  perform-
ance,  a  feasible  strategy  is  to  construct  a  twisted  donor–
acceptor  (D–A)  unit,  decreasing  the  overlap  between  the
highest occupied molecular orbital (HOMO) and the lowest un-
occupied  molecular  orbital  (LUMO),  and  minimizing  the  en-
ergy  gap  (∆EST)  between  the  lowest  singlet  (S1)  and  triplet
(T1)  states[2, 3].  However,  this  long-range  charge  transfer  fea-
ture  is  often  disadvantageous  for  achieving  high  oscillator
strengths  (f)  and  radiative  transition  rates  (kr)[4] (Fig.  1(a)).
Moreover,  common TADF emitters always display broad elec-
troluminescence  spectra,  whose  full-widths  at  half-maximum
(FWHMs)  are  70–100  nm[5].  Therefore,  it  is  necessary  to  real-
ize a narrow-band emission system, which can improve the dis-
play quality greatly, with high kr and high rate constant of re-
verse intersystem crossing (kRISC).

In 2015, Hetakeyma et al. developed a rigid polycyclic aro-
matic  framework  based  on  B/N  system  with  opposite  mul-
tiple-resonance (MR) effect  for  the first  time,  offering narrow-
band  emission  and  efficient  TADF  performance[6] (Fig.  1(b)).
In the emitter DABNA-1 with a highly rigid framework, the cofa-
cial  backbone  resulted  in  short-range  charge  transfer,  giving
a  high  PLQY  of  88%  and  a  small  FWHM  of  30  nm  in  doped
film.  The  corresponding  OLEDs  with  1  wt%  doping  offered  a
maximum external  quantum efficiency (EQEmax)  of  13.5% and
a  FWHM  of  28  nm.  Through  modifying  peripheral  benzene
ring  and  diphenylamine,  the  emission  peak  of  DABNA-2  was
slightly  red-shifted  and  the  OLEDs  exhibited  a  FWHM  of  28
nm and an EQEmax of 20.2%. In terms of device efficiency and
color  purity,  it  is  superior  to  previous  commercial  blue  emit-
ters[7],  and  it  also  has  potential  to  replace  current  commer-
cial  blue  fluorescent  materials  as  the  core  of  OLEDs.  Al-
though MR-TADF emitters have achieved nearly full-color emis-
sion,  this  class  of  materials  tends  to  exhibit  poor kRISC values
(~104 s–1)  and severe efficiency roll-off  at high current densit-
ies[8].

The  strategies  for  alleviating the  efficiency  roll-off  in  MR-
TADF  OLEDs  are  as  follows:  (1)  hyperfluorescence  sensitiza-
tion (HFS) by using TADF materials with high kRISC; (2) introdu-

cing  "heavy  atoms"  like  S  or  Se  into  the  skeleton;  (3)  extend-
ing charge delocalization by fusing rigid skeleton. In 2019, Ada-
chi et  al.  designed  HFS  OLEDs  based  on ν-DABNA[9] and
hetero-donor-type TADF material  (HDT-1)  with accelerated S1

energy transfer process[10].  A high kRISC (9.2 × 105 s–1)  was ob-
tained in doped ternary film.  Compared with host-guest  type
devices,  sensitized  pure-blue  TADF  OLEDs  showed  higher
EQE and small  efficiency roll-off,  and the EQE reached 32% at
1000  cd/m2.  Later,  Duan et  al.  fused  aza-aromatics  into  B/N
skeleton and synthesized a pure-green AZA-BN emitter (λPL =
522  nm,  FWHM  =  28  nm)[11] (Fig.  1(c)).  Benefitting  from  effi-
cient  HFS  mechanism,  HFS  OLEDs  displayed  a  higher  EQEmax

of  31.6%  and  smaller  efficiency  roll-off  than  non-sensitized
devices[12]. Obviously, through the intervention of TADF sensit-
izer,  the  ternary  emitting  layer  showed  a  more  efficient
triplet-exciton up-conversion rate.

∝

According  to  Fermi’s  golden  rule,  the kRISC in  TADF  sys-
tems  mainly  depends  on  spin-orbit  coupling  (SOC)  and  en-
ergy splitting between S1 and T1 states, as expressed in equa-
tion: kRISC  |<S1|ĤSOC|T1>/ΔEST|2 [13] .  Recently,  Yasuda  group
developed  a  fused-nonacyclic  π-system  (BSBS-N1),  embed-
ded with B,  N,  and S atoms.  With “heavy atom” S[14],  BSBS-N1
exhibited  a  big  <S1|ĤSOC|T1>  value  of  0.31  cm–1 and  a  high
kRISC of  1.9  ×  105 s–1.  The  corresponding  OLEDs  offered  smal-
ler  efficiency  roll-off  than  BBCz-SB  LEDs[8].  Similarly,  the
strategy of  using S to improve SOC was further confirmed by
Yang et  al.[15] kRISC over  105 s–1 was  obtained in  toluene solu-
tion  and  MR-TADF  OLEDs  showed  smaller  efficiency  roll-off.
To intuitively reflect the influence of heavy atom on RISC, Yas-
uda et  al.  doped  Se  atom  into  MR-TADF  emitter  (CzBSe)[16],
yielding  a  record kRISC exceeding  108 s–1 (Fig.  2(a)).  Benefit-
ting  from  its  ultrafast  triplet-exciton  up-conversion,  OLEDs
with CzBSe offered an EQEmax of 23.9%, with narrow blue emis-
sion  (λEL =  481  nm,  FWHM  =  33  nm)  and  significantly  allevi-
ated efficiency roll-off.

Extending  charge  delocalization  by  fusing  rigid  skeleton
is  an  effective  approach  to  solve  efficiency  roll-off  of  MR-
TADF OLEDs. By fusing hole-transport units (carbazole, diben-
zofuran) into B/N framework, Zheng et al.  achieved two π-ex-
tended  MR-TADF  emitters  (NBO  and  NBNP),  peaking  at  487
and 500 nm with narrow FWHMs of 27 and 29 nm in toluene
solutions[17],  respectively.  ∆EST were  reduced  (0.12  eV  for
NBO, 0.09 eV for NBNP) via charge delocalization of frontier or-
bitals.  Meanwhile,  SOC  values  were  further  improved  due  to
the  introduction of  O  and N heteroatoms.  As  results, kRISC for
NBO and NBNP are nearly an order of magnitude higher than
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that  of  BBCz-SB.  Consequently,  NBO- and NBNP-based OLEDs
showed  EQEmax of  26.1%  and  28.0%,  with  low  efficiency  roll-
off.  To  further  enhance  the  CT  state  of  MR-TADF  emitters,
Zheng et  al.  adopted  double  resonance  unit  superposition
strategy  and  obtained  two  green  MR-TADF  emitters  (VTCzBN
and TCz-VTCzBN) based on indolo[3,2,1-jk]carbazole (ICz) unit
and  B/N  skeletons[18] (Fig.  2(b)),  and  the  emissions  peaked  at
496  and  521  nm  with  FWHMs  of  34  and  29  nm,  respectively.

Benefitting from thorough charge delocalization within fronti-
er molecular orbitals, ∆EST values were close to 0 eV and large
<S1|ĤSOC|T1> values  were  obtained.  As  a  result,  high kRISC val-
ues  were  also  achieved,  and  VTCzBN  and  TCz-VTCzBN-based
OLEDs  showed  EQEmax of  31.7%  and  32.2%,  with  low  effi-
ciency  roll-off,  respectively.  D-TCz-VTCzBN  displayed  ultra-
pure  green  CIE  of  (0.22,  0.71),  consistent  with  the  green  dis-
play standard of the National Television System Committee.

 

Fig. 1. (Color online) (a) Traditional design strategy for TADF. Reproduced with permission[6], Copyright 2016, Wiley-VCH. (b) Design strategy for
MR-TADF. Reproduced with permission[6], Copyright 2016, Wiley-VCH. (c) New MR-TADF skeletons with fused aza-aromatics. Reproduced with per-
mission[11], Copyright 2020, Wiley-VCH.
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In  short,  enhancing kRISC of  MR-TADF  emitters  is  crucial
for  reducing  efficiency  roll-off  of  OLEDs.  Some  strategies  are
highlighted, like TADF sensitization, heavy atom introduction,
extending  charge  delocalization.  More  efforts  are  needed  to
develop  MR-TADF  OLEDs  with  high  EQE,  low  efficiency  roll-
off and narrow emission.
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